
Cologne
Chip

GateMateTM FPGA

Toolchain Installation
User Guide

UG1002 User Guide January 2024

Cologne Chip AG
Eintrachtstr. 113
50668 Köln

Tel.: +49 (0) 221 / 91 24-0
Fax: +49 (0) 221 / 91 24-100

https://colognechip.com
info@colognechip.com

Copyright 2019 - 2024 Cologne Chip AG

All Rights Reserved

The information presented can not be considered as assured characteristics. Data can
change without notice. Parts of the information presented may be protected by patent
or other rights. Cologne Chip products are not designed, intended, or authorized for
use in any application intended to support or sustain life, or for any other application in
which the failure of the Cologne Chip product could create a situation where personal
injury or death may occur.

https://colognechip.com
mailto:info@colognechip.com

CCGM1A1 Contents
Cologne
Chip

Contents

About this Document 4

1 Introduction 5

1.1 Toolchain Overview . 5

1.2 Hard- and Software Requirements . 6

2 Download pre-build Software 7

3 Build Software from Source 8

3.1 Build Synthesis Software . 8

3.1.1 Build Yosys for Linux . 8

3.1.2 Build GHDL for Linux . 9

3.2 Build Programmer Software . 10

4 Install Optional Simulation Tools 11

4.1 Icarus Verilog . 11

4.2 GTKWave . 11

5 Quick Start 12

5.1 Synthesize Design . 12

5.2 Implement Design . 14

5.3 Program Bitfile . 15

UG1002 January 2024 3 of 18

Cologne
Chip CCGM1A1

About this Document

This user guide describes the toolchain installation for the Cologne Chip GateMateTM se-ries and is part of the GateMateTM documentation collection.
For more information please refer to the following documents:
• Technology Brief of GateMateTM FPGA�

• DS1001 – GateMateTM FPGA CCGM1A1 Datasheet �
• DS1002 – GateMateTM FPGA Programmer Board Datasheet �
• DS1003 – GateMateTM FPGA Evaluation Board Datasheet �

Cologne Chip provides a comprehensive technical support. Please visit our website formore information or contact our support team.

Revision History

This datasheet is constantly updated. The latest version of the document can be foundfollowing the link below:
UG1002 – GateMateTM FPGA Toolchain Installation User Guide �

Date Remarks

January 2024 Minor changes in Section 5.3 on page 15.
November 2022 Call of Place & Route added for Windows in Section 5.2 onpage 14.
September 2022 Comprehensive revision and notes on configuration via SPIin Section 5.3 from page 15.
August 2022 Comprehensive revision.
April 2022 Pre-build binary option of openFPGALoader � for Windowsadded.
March 2022 Initial release.

4 of 18 UG1002 January 2024

https://www.colognechip.com/docs/CologneChip-GateMate-Productbrief-latest.pdf
https://www.colognechip.com/docs/ds1001-gatemate1-datasheet-latest.pdf
https://www.colognechip.com/docs/ds1002-gatemate1-programmer-latest.pdf
https://www.colognechip.com/docs/ds1003-gatemate1-evalboard-latest.pdf
https://www.colognechip.com/docs/ug1002-toolchain-install-latest.pdf
https://github.com/trabucayre/openFPGALoader

CCGM1A1 Introduction
Cologne
Chip

1 Introduction

1.1 Toolchain Overview

This user guide describes the toolchain installation for the Cologne Chip GateMateTM se-ries. It covers building latest software from source or downloading pre-build binaries forLinux and Windows environments.
An exemplary toolchain flow from design entry to configuration is illustrated in Figure 1.

Silice

SpinalHDL

AmaranthHDL (nMigen)
GateMate

EasyConvert
Place&Route

openFPGALoader

FTDI scripts
Bitstream

Netlist

Netlist

VHDL

Verilog Yosys

1. Design Entry 2. Synthesis 3. Implementation 4. Con�guration

GHDL

Figure 1: Exemplary Toolchain Flow

The Yosys Open SYnthesis Suite � is used to perform RTL synthesis. It has extensiveVerilog support. VHDL sources can be synthesized via GHDL � through the ghdl-yosys-plugin �. Other HDLs or tools with Verilog backend can also be used.
Synthesis generates a gate-level representation of the design entry in form of a Verilognetlist of architecture-specific primitives. It can be simulated or passed to the Place andRoute tool for implementation and bitstream generation. Furthermore, simulation ofthe resulting netlist with back-annotated timing delays can be done using third-partysimulators such as Icarus Verilog � together with the GTKWave � waveform viewer.
Configuration bitstreams are loaded into the FPGA or an external flash memory viaopenFPGALoader �.

UG1002 January 2024 5 of 18

https://github.com/YosysHQ/yosys
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl-yosys-plugin
https://github.com/ghdl/ghdl-yosys-plugin
http://iverilog.icarus.com/
http://gtkwave.sourceforge.net/
https://github.com/trabucayre/openFPGALoader

Cologne
Chip Introduction CCGM1A1

1.2 Hard- and Software Requirements

• Computer with Linux or Windows operating system
• Supported Linux environments:

– Debian-based Linux (Debian, Ubuntu, ...) with apt package manager
– Arch-based Linux (Arch, Manjaro, ...) with pacman package manager
– Red Hat-based Linux (Fedora, ...) with dnf or yum package manager

• Windows environments:
– Windows 7 or later, 64 bit
– Zadig USB driver installer (https://zadig.akeo.ie/)

• (optional) GateMateTM FPGA Evaluation Board (Link �)
• Third-party simulator, e.g. Icarus Verilog (http://iverilog.icarus.com/)
• Third-party waveform viewer, e.g. GTKWave(http://gtkwave.sourceforge.net/)

6 of 18 UG1002 January 2024

https://zadig.akeo.ie/
https://colognechip.com/programmable-logic/gatemate-evaluation-board
http://iverilog.icarus.com/
http://gtkwave.sourceforge.net/

CCGM1A1 Download pre-build Software
Cologne
Chip

2 Download pre-build Software

Cologne Chip provides pre-build packages containing all toolchain binaries and sam-ple projects. Please check availability on the official website. Login to your accountat https://colognechip.com/mygatemate/ and follow the menu to the softwaredownload section.
There are packages for Windows and Linux. WSL users are advised to use the Windowspackages. Chapter 5 describes the contents of the packages and how to operate the soft-ware using the included scripts.

UG1002 January 2024 7 of 18

https://colognechip.com/mygatemate/

Cologne
Chip Build Software from Source CCGM1A1

3 Build Software from Source

This chapter is optional and is intended for advanced users who want to compile thetoolchain from source.
3.1 Build Synthesis Software

The Yosys Open SYnthesis Suite � is used to perform RTL synthesis. VHDL support isonly available by installing the GHDL � and ghdl-yosys-plugin � extensions.
3.1.1 Build Yosys for Linux

Install prerequisites for Debian/Ubuntu Linux with apt:
$ sudo apt install build-essential clang bison flex libreadline-dev

↪→ gawk tcl-dev libffi-dev git graphviz xdot pkg-config python3
↪→ libboost-system-dev libboost-python-dev libboost-filesystem-dev
↪→ zlib1g-dev

Install prerequisites for Arch-based Linux with pacman:
$ sudo pacman -S base-devel git tcl zlib

Install prerequisites for Red Hat-based Linux, e.g. Fedora, with dnf:
$ sudo dnf install make clang tcl-devel zlib-devel readline-devel

↪→ libffi-devel bison flex

The following commands download, compile and install the source files regardless of theLinux distribution used. First, clone the repository withgitand change into the directory.
$ git clone https://github.com/YosysHQ/yosys.git
$ cd yosys

Inside the Yosys directory, configure the build system to use a specific compiler such as
gcc or clang.
$ make config-clang

The typical build and installation process for Linux is invoked with the following twocommands.
$ make -j$(nproc)
$ sudo make install

8 of 18 UG1002 January 2024

https://github.com/YosysHQ/yosys
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl-yosys-plugin

CCGM1A1 Build Software from Source
Cologne
Chip

3.1.2 Build GHDL for Linux

Both GHDL and ghdl-yosys-plugin are only required for VHDL support in Yosys. Pleaseproceed with the steps from Section 3.1.1 if VHDL support is not required.
Install prerequisites for Debian/Ubuntu Linux with apt:

$ sudo apt install gnat zlib1g-dev

Install prerequisites for Arch-based Linux with pacman:
$ sudo pacman -S gcc-ada zlib

Install prerequisites for Red Hat-based Linux, e.g. Fedora, with dnf:
$ sudo dnf install gcc-gnat zlib

The following commands download, compile and install the source files regardless of theLinux distribution used. First, clone the repository withgitand change into the directory.
$ git clone https://github.com/ghdl/ghdl.git
$ cd ghdl

The configuration, build and installation process is invoked with the following three com-mands.
$./configure --prefix=/usr/local
$ make
$ sudo make install

Now clone the ghdl-yosys-plugin with git and change into the directory.
$ cd ..
$ git clone https://github.com/ghdl/ghdl-yosys-plugin.git
$ cd ghdl-yosys-plugin

The Makefile will find the ghdl installation in /usr/local. To start building the plugin,run:
$ make

The output is a shared library (ghdl.so on GNU/Linux). To install the module, the librarymust be copied to YOSYS_PREFIX/share/yosys/plugins/ghdl.so, where YOSYS_PREFIXis the installation path of Yosys. This can be achieved through a make target:
$ sudo make install

UG1002 January 2024 9 of 18

Cologne
Chip Build Software from Source CCGM1A1

The library can then be used by Yosys directly, e.g. with:
$ yosys -m ghdl

The Quick Start Guide in Section 5 describes how to synthesize VHDL sources using theGHDL plugin.
3.2 Build Programmer Software

openFPGALoader � integrates well into the toolchain. Version v0.7.0 or later is required.
Build OpenFPGALoader for Linux

Install prerequisites for Debian/Ubuntu Linux with apt:
$ sudo apt install libftdi1-2 libftdi1-dev libhidapi-hidraw0 libhidapi-

↪→ dev libudev-dev zlib1g-dev cmake pkg-config make g++

Install prerequisites for Arch-based Linux with pacman:
$ sudo pacman -S git cmake make gcc pkgconf libftdi libusb zlib hidapi

Install prerequisites for Red Hat-based Linux, e.g. Fedora, with dnf:
$ sudo dnf install cmake libftdi-devel zlib hidapi-devel systemd-devel

The following commands download, compile and install the source files regardless of theLinux distribution used. First, clone the repository withgitand change into the directory.
$ git clone https://github.com/trabucayre/openFPGALoader.git
$ cd openFPGALoader

Next, use the following three commands to prepare cmake:
$ mkdir build
$ cd build
$ cmake ..

The build and installation process is invoked with the following two commands:
$ make -j$(nproc)
$ sudo make install

10 of 18 UG1002 January 2024

https://github.com/trabucayre/openFPGALoader

CCGM1A1 Install Optional Simulation Tools
Cologne
Chip

4 Install Optional Simulation Tools

This section describes some useful third-party simulation and viewing tools.
4.1 Icarus Verilog

Icarus Verilog � is a widely used Verilog compiler, e.g. for simulation. It is available for awide range of platforms.
Install from package manager for Debian/Ubuntu Linux with apt:

$ sudo apt install iverilog

Install from package manager for Arch-based Linux with pacman:
$ sudo pacman -S iverilog

Install from package manager for Red Hat-based Linux, e.g. Fedora, with dnf:
$ sudo dnf install iverilog

Pre-build binaries for Windows are available for download here:
https://bleyer.org/icarus/

4.2 GTKWave

GTKWave � is a waveform viewer which reads most available value change dump filesand is available for a wide range of platforms.
Install from package manager for Debian/Ubuntu Linux with apt:

$ sudo apt install gtkwave

Install from package manager for Arch-based Linux with pacman:
$ sudo pacman -S gtkwave

Install from package manager for Red Hat-based Linux, e.g. Fedora, with dnf:
$ sudo dnf install gtkwave

Pre-build binaries for Windows are available for download here:
http://gtkwave.sourceforge.net/

UG1002 January 2024 11 of 18

http://iverilog.icarus.com/
https://bleyer.org/icarus/
http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/

Cologne
Chip Quick Start CCGM1A1

5 Quick Start

This tutorial guides you through all toolchain components with an example project. Pleasemake sure to setup or install all required software components from Sections 2 to 4.
The easiest way is to download the corresponding archive from the website:

https://colognechip.com/downloads/cc-toolchain-win.zipor https://colognechip.com/downloads/cc-toolchain-linux.zip

In this tutorial, we will use the sample projects that come with the pre-built binaries. The
cc-toolchain-{win,linux}package contains the two sub-directoriesbinandworkspace.
• The bin directory contains all binaries for yosys, p_r and openFPGALoader.
• The workspace directory contains sample projects in Verilog and VHDL.

Linux or WSL users should use the provided Makefiles. Windows users can use the batchscript in the respective project directory. Project directories have the following structure:
• The log directory will contain log files after synthesis and implementation.
• The net directory will contain a Verilog netlist after synthesis.
• Thesimdirectory contains a simple testbench for post-synthesis or post-implementationsimulation.
• The src directory contains all Verilog, VHDL and CCF constraint files.
• Both run.bat or Makefile scripts help calling the tools.

5.1 Synthesize Design

First change to the desired project directory with a console. Synthesis can be started viathe supplied scripts or manually via command.
Run synthesis with all Verilog or VHDL files in the src directory (Linux or WSL):

$ make synth_vlog

$ make synth_vhdl

Run synthesis with all Verilog or VHDL files in the src directory (Windows):
$ run.bat synth_vlog

$ run.bat synth_vhdl

Basically, the script executes the following commands for Verilog or VHDL:
12 of 18 UG1002 January 2024

https://colognechip.com/downloads/cc-toolchain-win.zip
https://colognechip.com/downloads/cc-toolchain-linux.zip

CCGM1A1 Quick Start
Cologne
Chip

$ yosys -l yosys.log -p 'read_verilog <FILES>; synth_gatemate -top <TOP
↪→ > -vlog net/<TOP>_synth.v'

$ yosys -l yosys.log -p 'ghdl --warn-no-binding -C --ieee=synopsys <
↪→ FILES> -e <TOP>; synth_gatemate -top <TOP> -vlog net/<TOP>_synth
↪→ .v'

After successful synthesis, yosys generates a Verilog netlist and a log file in the net and
log directories. The final parts of the log file displays information on primitive utilizationafter synthesis. Note that several elements can be combined during implementation, sofinal utilization reports may differ after implementation.

[...]
2.50. Printing statistics.

=== example ===

Number of wires: 8
Number of wire bits: 22
Number of public wires: 5
Number of public wire bits: 19
Number of memories: 0
Number of memory bits: 0
Number of processes: 0
Number of cells: 20

CC_BUFG 1
CC_DFF 8
CC_IBUF 2
CC_L2T4 1
CC_OBUF 8
[...]

Post-Synthesis Simulation

Simulation of the synthesis netlist requires a third-party simulator and a waveform viewersuch as Icarus Verilog � and GTKWave �. The sample projects contain a testbench in the
sim directory.
Run post-synthesis simulation (Linux or WSL):

$ make synth_sim

Basically, the script executes the following commands:
$ iverilog -o sim/<TOP>.vvp net/<TOP>_synth.v sim/<TOP>_tb.v ../../bin/

↪→ yosys/share/gatemate/cells_sim.v
$ vvp -N sim/<TOP>.vvp

UG1002 January 2024 13 of 18

http://iverilog.icarus.com/
http://gtkwave.sourceforge.net/

Cologne
Chip Quick Start CCGM1A1

The resulting VCD can be opened with any waveform viewer.
$ make wave

5.2 Implement Design

The Cologne Chip Place & Route loads the Verilog netlist in the net directory. Constraintsfor pin assignments or CPE pre-placement are set with the CCF file in the src directory.
Run implementation (Linux or WSL):

$ make impl

Run implementation (Windows):
$ run.bat impl

Basically, the script executes the following command:
$ p_r -i net/<TOP>_synth.v -o <TOP> -ccf src/<TOP>.ccf > log/impl.log

Please check the DS1001 – GateMateTM FPGA CCGM1A1 Datasheet � for a more detaileddescription of the available implementation parameters. Depending on the parameters,the tool generates at least the following output files:
• Log output in log/impl.log

• Configuration bitsream: <TOP>_00.cfg.bit
• Verilog netlist for post-implementation simulation: <TOP>_00.v
• SDF delay file for post-implementation simulation: <TOP>_00.sdf
• Pin file: <TOP>_00.pin
• Place file: <TOP>_00.place

Post-Implementation Simulation

Run post-synthesis simulation (Linux or WSL):
$ make impl_sim

Basically, the script executes the following commands:
$ iverilog -o sim/<TOP>.vvp <TOP>_00.v sim/<TOP>_tb.v ../../bin/p_r/

↪→ cpelib.v
$ vvp -N sim/<TOP>.vvp

14 of 18 UG1002 January 2024

https://www.colognechip.com/docs/ds1001-gatemate1-datasheet-latest.pdf

CCGM1A1 Quick Start
Cologne
Chip

The resulting VCD can be opened with any waveform viewer.
$ make wave

5.3 Program Bitfile

This tutorial assumes that e.g. an GateMateTM Evaluation Board is available. In Linuxenvironments, openFPGALoader can be used to send the configuration via JTAG or SPI.Please make sure to set the corresponding CFG_MD on your evaluation board.
In Linux environments, it may be necessary to install some dependencies via the build-inpackage manager. openFPGALoader will report the missing packages.
In Windows environments, it is necessary to install USB drivers using Zadig �. Down-load the software and connect the GateMateTM FPGA Evaluation Board to your USB port.In the Zadig Window, select Options > List All Devices to refresh the device list. Then,unmark Options > Ignore Hubs or Composite Parents. From the drop-down list, select
GateMateTM FPGA Evaluation Board (Composite Parent). Now select libusb-win32 (any
version) from the driver list and replace the drivers (see Figure 2).

Figure 2: Zadig Window with selected GateMateTM FPGA Evaluation Board

Replacing drivers might take a moment. Your GateMateTM FPGA Evaluation Board shouldthen be listed as libusb-win32 devices in the Device Manager as shown in Figure 3.

Figure 3: GateMateTM FPGA Evaluation Board in Device Manager

UG1002 January 2024 15 of 18

https://zadig.akeo.ie/

Cologne
Chip Quick Start CCGM1A1

Configure the FPGA via JTAG (Linux or WSL):
$ make jtag

Configure the FPGA via JTAG (Windows):
$ run.bat jtag

The script executes the following command:
$ openFPGALoader -b gatemate_evb_jtag <TOP>_00.cfg.bit

After successful configuration via JTAG, the FPGA starts automatically.
Alternatively, the device can also be configured directly via SPI. The Makefile commandis (Linux or WSL):
$ make spi

The batch command is (Windows):
$ run.bat spi

The script runs the following command:
$ openFPGALoader -b gatemate_evb_spi -m <TOP>_00.cfg.bit

The FPGA starts automatically after successfull configuration via SPI.
Store the configuration bitstream to an external flash via JTAG-SPI-bypass (Linux orWSL):
$ make jtag-flash

Store the configuration bitstream to an external flash via JTAG-SPI-bypass (Windows):
$ run.bat jtag-flash

The script executes the following command:
$ openFPGALoader -b gatemate_evb_jtag -f --verify <TOP>_00.cfg.bit

Alternatively, the flash can also be programmed directly via SPI. The Makefile commandis (Linux or WSL)
$ make spi-flash

16 of 18 UG1002 January 2024

CCGM1A1 Quick Start
Cologne
Chip

The batch command is (Windows)
$ run.bat spi-flash

The script runs the following command:
$ openFPGALoader -b gatemate_evb_spi <TOP>_00.cfg.bit

After successful programming the external flash, the CFG_MD must be set to active SPI inorder to start the FPGA from flash after reset.

UG1002 January 2024 17 of 18

GateMateTM FPGA
Toolchain Installation User Guide
UG1002
January 2024

Cologne
Chip

	User Guide
	Contents
	About this Document
	1 Introduction
	1.1 Toolchain Overview
	1.2 Hard- and Software Requirements

	2 Download pre-build Software
	3 Build Software from Source
	3.1 Build Synthesis Software
	3.1.1 Build Yosys for Linux
	3.1.2 Build GHDL for Linux

	3.2 Build Programmer Software

	4 Install Optional Simulation Tools
	4.1 Icarus Verilog
	4.2 GTKWave

	5 Quick Start
	5.1 Synthesize Design
	5.2 Implement Design
	5.3 Program Bitfile

