
Cologne
Chip

GateMateTM FPGA User Guide

Integrated Logic
Analyzer

UG1005 User Guide August 2025

Cologne Chip AG
Eintrachtstr. 113
50668 Köln

Tel.: +49 (0) 221 / 91 24-0
Fax: +49 (0) 221 / 91 24-100

https://colognechip.com
info@colognechip.com

Copyright 2019 - 2025 Cologne Chip AG

All Rights Reserved

The information presented can not be considered as assured characteristics. Data can
change without notice. Parts of the information presented may be protected by patent
or other rights. Cologne Chip products are not designed, intended, or authorized for
use in any application intended to support or sustain life, or for any other application in
which the failure of the Cologne Chip product could create a situation where personal
injury or death may occur.

https://colognechip.com
mailto:info@colognechip.com

CCGM1A1 Contents
Cologne
Chip

Contents

1 Introduction 7

2 Installation 9

2.1 Python 3 Installation . 9

2.2 Installation of ILA . 9

2.2.1 ILA Download . 9

2.2.2 Repository Structure . 9

2.3 Installation of External Python Packages . 10

2.4 Installation of a Wave Viewer . 11

2.4.1 GTKWave . 11

2.4.2 Other Wave Viewers . 11

2.5 Basic ILA Setup . 11

3 ILA Functionality 13

3.1 Trigger Condition . 13

3.2 Data Capturing . 14

3.3 Frequency Setup . 15

3.4 Recording Length . 16

3.5 Input Control . 18

3.6 Reset Control . 18

4 ILAcop.py Parameters and Options 21

5 ILA Setup File config.py 26

5.1 Common Remarks . 26

5.2 Synthesis Tool and Calling Parameters . 26

5.3 Place&Route Tool and Calling Parameters . 26

5.4 FPGA Bitstream Upload . 27

5.5 Waveform Viewer . 28

5.6 ILA Connection to External Hardware . 28

5.7 SPI Frequency . 29

5.8 Block RAM . 29

UG1005 August 2025 3 of 56

Cologne
Chip Contents CCGM1A1

6 Hardware Setup 31

7 ILA SPI Interface 33

8 Use of ILA 34

8.1 Workflow . 34

8.2 The ILAcop.py Menu . 36

8.3 Configuration Example with the Interactive Shell 37

8.4 Configuration from a JSON file . 52

8.5 Restart of ILA on the FPGA at runtime . 54

Acronyms 55

4 of 56 UG1005 August 2025

CCGM1A1 List of Figures
Cologne
Chip

List of Figures

1 Basic ILA usage . 7

2 Clarification of terms and contexts . 13

3 Procedure with a single trigger event . 13

4 Procedure with a trigger sequence . 14

5 DUT reset in normal operationmode (left: reset together with ILA via primitive,
right: reset via input pin) . 19

6 DUT reset with reset control function (left: reset via primitive, right: reset via
input pin) . 19

7 ILA mode config . 23

8 ILA mode reconfig . 23

9 ILA mode start . 23

10 ILA hardware setup . 31

11 ILA hardware setup using the GateMateTM FPGA Programmer 31

12 SPI interface of ILAcop.py . 33

13 Overview of the ILA workflow . 35

14 GateMateTM FPGA Evaluation Board with WS2812 LED matrix 37

UG1005 August 2025 5 of 56

Cologne
Chip CCGM1A1

About this Document

This User Guide covers the getting started procedure of the integrated logic analyzer (ILA)for use with the Cologne Chip GateMateTM FPGA Series and is part of the GateMateTM doc-umentation collection.
For more information please refer to the following documents:
• Technology Brief of GateMateTM FPGA�

• DS1001 – GateMateTM FPGA CCGM1A1 Datasheet �
• DS1002 – GateMateTM FPGA Programmer Board Datasheet �
• DS1003 – GateMateTM FPGA Evaluation Board Datasheet �
• UG1001 – GateMateTM FPGA Primitives Library �

• UG1002 – GateMateTM FPGA Toolchain Installation User Guide �

Cologne Chip provides a comprehensive technical support. Please visit our website formore information or contact our support team.

6 of 56 UG1005 August 2025

https://www.colognechip.com/docs/CologneChip-GateMate-Productbrief-latest.pdf
https://www.colognechip.com/docs/ds1001-gatemate1-datasheet-latest.pdf
https://www.colognechip.com/docs/ds1002-gatemate1-programmer-latest.pdf
https://www.colognechip.com/docs/ds1003-gatemate1-evalboard-latest.pdf
https://www.colognechip.com/docs/ug1001-gatemate1-primitives-library-latest.pdf
https://www.colognechip.com/docs/ug1002-toolchain-install-latest.pdf

CCGM1A1 Introduction
Cologne
Chip

1 Introduction

The integrated logic analyzer (ILA) can be used to perform in-system debugging of field-programmable gate array (FPGA) designs on the GateMate FPGA at runtime.
All signals of the design inside the FPGA can be monitored in a waveform.

ILA

ILAcop.py

ILA design

User design
(DUT)

GateMate
toolchain

Figure 1: Basic ILA usage

The ILA can be used in conjunction with the GateMate FPGA and it consists of the ILAdesign and the ILA control program ILAcop.py.
The digital circuit of the ILA was designed in the hardware description languageVerilog.APython program controls the configuration of the ILA with the device under test (DUT)and the communication, as well as the interaction between the FPGA and the user duringthe debugging process.
Python3with additional packages is required for the execution of the user software. Fur-ther software, such as the GateMate FPGA toolchain and GTKWave, is also required to ex-ecute the ILA.
This project is licensed under the GNU General Public License. See the license file � fordetails.

G Please note !

It is assumed in this document
1. that the reader has developed an FPGA design and wants to useit on the GateMate FPGA and
2. that the use of GateMate FPGA, along with Yosys Open SYn-thesis Suite (Yosys) and Place & Route, is well-known and thecustomer’s design has already been loaded into the FPGA usingthe GateMate toolchain. Otherwise check the GateMate FPGAToolchain Installation User Guide �.

UG1005 August 2025 7 of 56

https://github.com/colognechip/gatemate_ila/blob/main/LICENSE
https://www.colognechip.com/docs/ug1002-toolchain-install-latest.pdf
https://www.colognechip.com/docs/ug1002-toolchain-install-latest.pdf

Cologne
Chip Introduction CCGM1A1

ILA can be used both with the GateMateTM FPGA Evaluation Board and with the customersown hardware.
• If the GateMateTM FPGA Evaluation Board is used, knowledge of its documentation isassumed. Please see DS1003 – Evaluation Board Datasheet � for more information.
• If customer hardware is used, please note that ILA requires a Universal Serial Bus(USB) interface between the computer and the GateMate FPGA. The FPGA ulti-mately uses an Serial Peripheral Interface (SPI) interface to communicate with thePCB circuitry. The USB-to-SPI adapter can either be built on the customer PCB orthe GateMateTM FPGA Programmer is used and connected to the SPI interface of theFPGA. Please see DS1002 – GateMate Programmer Board Datasheet � for more in-formation.

8 of 56 UG1005 August 2025

https://www.colognechip.com/docs/ds1003-gatemate1-evalboard-latest.pdf
https://www.colognechip.com/docs/ds1002-gatemate1-programmer-latest.pdf

CCGM1A1 Installation
Cologne
Chip

2 Installation

2.1 Python3 Installation

Python3 is required to use the ILAcop.py. It is recommended to use at least Python 3.8 1.On most Linux systems, Python3 can be installed from the package management soft-ware.
For example, users of Debian-based Linux distributions can use the Advanced Package
Tool:
$ > sudo apt-get update
$ > sudo apt install python3

Windows users can also install Python3 from the official Microsoft Store.
More information about the installation of Python3 can be found at the Python down-load page �.
2.2 Installation of ILA

2.2.1 ILA Download

Download ILA from the GitHub repository�. The ILA root directorygatemate_ila/ canbe stored anywhere in the file system.
2.2.2 Repository Structure

In the following the files of ILA and their functions are explained:
app/ This folder contains all the files required to run the ILA application and addition-ally all files created by the ILA software.
example_dut/ This folder contains several examples which can be used to explore theuse of ILA.
log/ This folder contains the .log files generated by Yosys and Place & Route when bring-ing the gateware of both the ILA design and device under test (DUT) to the FPGA.
net/ This folder contains theVerilognetlist of the gateware of the ILA design and DUTgenerated by Yosys.
p_r_out/ This folder contains all files generated by Place & Route including the post-synthesis netlist of the gateware of both the ILA design and DUT.
sim/ This folder contains the testbench, which can be used to simulate the gateware ofthe ILA design.
1 ILA version 1.1.1 has been testetd with Python version 3.10.11.

UG1005 August 2025 9 of 56

https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/colognechip/gatemate_ila

Cologne
Chip Installation CCGM1A1

src/ This folder contains the Verilog source files of the ILA design.
app/vcd_files/ This folder contains the .vcd files created by the ILA software. The.vcd files describe the waveforms of the analyzed signals and can be opened with awaveform viewer like GTKWave.
LICENSE The license file specifies the legal terms under which the contents of the repos-itory can be used, modified, and distributed.
app/ILAcop.py This file is the main script from which the user starts the ILA software.The script handles the passed parameters and starts the processes requested by theuser. For more information about the usage see Chapter 4.
app/config.py Here, configurations can be made for the used tools. For more infor-mations see Chapter 5.
app/requirements.txt This file contains all the Python packages used by the ILAprogram. It can be used to install the packages using Python’s package manager

pip (see Section 2.3).
app/save_config/ All created configurations of ILA are stored in this folder in aJavaScript Object Notation (data interchange format) (JSON) file. ILA can be con-figured and started with the help of this files. The files contain all configurations inplain text and can be edited by the user. For more informations see Section 8.4.
app/last_upload.txt This file contains the path and filename to the JSON file of thelast ILA configuration transferred to the FPGA. With this information, communica-tion with ILA can be restarted using the last uploaded configuration.
app/config_design/ During the configuration of ILA, the software creates an editedversion of the DUT gateware. These Verilog files are stored in this folder.
2.3 Installation of External Python Packages

The ILA file app/requirements.txt contains a list of external Python packages thatare required for the execution of the ILA software. These packages are:
• pyftdi
• pyvcd
• prettytable
• pyusb

One way to install these packages is to use the Python package management software
pip.
Ifpip is not present, in somePython versions the moduleensurepip is available, whichcan be used to install or upgrade pip:
$ > python3 -m ensurepip --upgrade

10 of 56 UG1005 August 2025

CCGM1A1 Installation
Cologne
Chip

Or alternatively,pip can be installed via the operation system package management soft-ware. For Debian-based Linux distributions:
$ > sudo apt install python3-pip

Further information about the installation can be found on thePython installation page�.
Finally, if pip is available, the required Python packages can be loaded. First, changeto the gatemate_ila/app/ directory. From there, the file app/requirements.txt isused for package installation:
$ > pip3 install -r requirements.txt

2.4 Installation of a Wave Viewer

To view the waveform of the signals being analyzed, any wave viewer which is able to read.vcd files and that can be called in a console can be installed.

2.4.1 GTKWave

A very common wave viewer is GTKWave. On Debian-based Linux distributions the pack-age management software can be used for installation:
$ > sudo apt install gtkwave

Windows users can downloadGTKWave in a .zip file�. The files are extracted to any folder.This folder contains a folder bin/ with the file gtkwave.exe. Add the bin/ folder to thesystem path.

2.4.2 Other Wave Viewers

Other wave viewers can also be used if they fulfill the requirements mentioned above. Thecall of the corresponding program must be adapted accordingly in the app/config.pyfile: When customising the call, please note that the software places the .vcd file in thecall between REPRESENTATION_SOFTWARE and REPRESENTATION_FLAGS.

2.5 Basic ILA Setup

The ILA program has to execute the toolchain applications and GTKWave. It must be ableto call the execution files from the system path. Ensure that your system can recognizethe following application calls from the system path by using the command line interface:
UG1005 August 2025 11 of 56

https://pip.pypa.io/en/stable/installation/
https://sourceforge.net/projects/gtkwave/files

Cologne
Chip Installation CCGM1A1

$ > yosys
$ > p_r
$ > openFPGALoader
$ > gtkwave

If a command is not found, its path must be entered in the system settings.
Alternatively, you can add the absolute path of the respective program to be executed inthe gatemate_ila/app/config.py file. This ILA setup file contains some main set-tings.
For example, the file config.py could be changed as follows:
YOSYS = '/home/dave/cc-toolchain-linux/bin/yosys/yosys'
YOSYS_FLAGS = '-nomx8'

PR = '/home/dave/cc-toolchain-linux/bin/p_r/p_r'
PR_FLAGS = '-cCP +uCIO' # The +uCIO flag must not be removed.

The ccf file is automatically appended

UPLOAD = '/home/dave/cc-toolchain-linux/bin/openFPGALoader/
↪→ openFPGALoader'

UPLOAD_FLAGS = ' -b gatemate_evb_spi -f --verify '

REPRESENTATION_SOFTWARE = '/home/dave/gtkwave/bin/gtkwave'
REPRESENTATION_FLAGS = ['--save', 'save.gtkw']

More information about the config.py file is given in Chapter 5.

12 of 56 UG1005 August 2025

CCGM1A1 ILA Functionality
Cologne
Chip

3 ILA Functionality

3.1 Trigger Condition

ILA has two ways of specifying a trigger condition:
Edge trigger: Any 1-Bit signal can be used as a trigger event on its falling or rising edge.
Pattern-matching trigger: Any set of 1-Bit signals and signal buses (or ranges thereof)that is part of the signal vector can be combined to form a trigger pattern. For eachbit of this pattern, a specific state can be defined (’1’, ’0’, or don’t care). The triggerevent occurs as soon as all bits have the defined value simultaneously.
The trigger condition is specified in the interactive shell before the DUT gets active. It canbe changed, stopped or re-activated during runtime by the user.

Trigger pattern Trigger sample

Signal vector Data sample

to be speci�ed before
DUT & ILA gateware is
in operation

DUT & ILA in operation
while waiting for the
trigger event

DUT & ILA in operation
after the trigger event
has been reached

(signal name-value pairs,
de�nes a trigger condidtion)

(captured signal values)

(signal names) (captured and stored
signal values)

trigger event

Figure 2: Clarification of terms and contexts

When the trigger condition has been reached, the data recording is executed until thespecified number of data samples has been captured. Then the data is automatically down-loaded to the computer and displayed in the wave viewer (see Figure 2).
Depending on the configuration, trigger monitoring is excecuted only once (see Figure 3),or several trigger events can be processed one after the other in a so-called trigger se-quence (see Figure 4).
If the pattern-matching trigger is activated, more hardware is required for the ILA designand the maximum possible sampling frequency may be reduced.

Figure 3: Procedure with a single trigger event

UG1005 August 2025 13 of 56

Cologne
Chip ILA Functionality CCGM1A1

Figure 4: Procedure with a trigger sequence

If a trigger sequence is used, the time between the trigger events is measured and output.This generates the following console output after the complete data sequence have beenrecorded, for example:
Times between trigger sequences
#
start - 1. trigger: 0.001346 s
1. trigger - 2. trigger: 0.088927 s
2. trigger - 3. trigger: 0.089089 s
3. trigger - 4. trigger: 0.088873 s
#
#######################################

3.2 Data Capturing

The signals to be captured are defined in the signal vector. For this purpose, the user canspecify up to 1200 signal bits from the DUT design, which are stored in a signal vector fordata capturing. The actual upper limit depends on the block RAMs used by the DUT.
These can be 1-bit signals or signal busses. It is also possible to select only partial sectionsof signal busses. All selected signals are combined in a signal vector.
To select a specific range of a signal bus, specify two natural numbers representing the bitpositions. These numbers must lie within the valid range of the signal bus. The order inwhich these numbers are specified should match the definition of the bus. For example,if the bus is defined as a[15:0], the range with the higher value is specified first, e.g.,
10:3. For a bus like b[0:15], the order would be reversed, e.g., 3:10.
Individual bits of a signal bus are simply indicated with the respective index. Several in-dividual signals and ranges can also be specified in combination. For this, the indexes andranges must be separated with a comma, such as
12,10:8,4,2:0.

14 of 56 UG1005 August 2025

CCGM1A1 ILA Functionality
Cologne
Chip

There are three different ways to select signals for the ILA analysis:
1. Via the interactive shell:All signals found in the DUT are listed in a table, including their bit width and themodule name in which they were found. They can then be selected one after theother for analysis (see Section 8.3 from page 37).
2. Via the JSON file:This method offers the advantage that signals can be conveniently entered using anyeditor. Further information can be found in Section 8.4 from page 52.
3. Directly in the design code via attribute marking:Signals can be marked directly in the design code for analysis.

• In Verilog, it is sufficient to prefix the signal with an attribute, e.g.:
(* ILA *) reg [24:0] counter_1;

• In VHDL, the attribute must first be declared, e.g.:
attribute ILA : boolean;

Individual signals can then be marked as follows:
signal ws2812_out_single : std_ulogic;
attribute ILA of ws2812_out_single : signal is true;

ILA recognizes all signals marked in this way and automatically selects them foranalysis. In the interactive shell, these signals already appear with an ‘A’ (for ‘All’)in the ‘selected’ column. The same applies to the automatically generated JSON file,in which the corresponding signals are also marked as ‘A’.
3.3 Frequency Setup

The sampling frequency defines the delay between the stored data samples.
• The sampling frequency can be up to 160 MHz in low power and economy mode, andmore than 200 MHz in speed mode.
• In general, the sampling frequency must be at least twice as high as the highest fre-quency of the signals to be sampled in order to reconstruct the signals correctly. Ifthe DUT has a clock frequency that is twice or four times as high as the signals to besampled, this is the perfect clock signal for ILA.
• The sampling frequency should be an integer multiple of the frequency of the signalsto be sampled.
• However, synchronous signals can also be sampled at the same clock frequency atwhich they are generated by the DUT. This is necessary if the DUT operates at a veryhigh clock frequency or if it does not have a clock frequency that is a multiple ofthe signals to be sampled. However, this requires that the signals to be sampled aresynchronized with this clock frequency. This variant usually provides very reliableresults, as there is no transition between different clock domains.

UG1005 August 2025 15 of 56

Cologne
Chip ILA Functionality CCGM1A1

• For an unsynchronous DUT, the clock frequency of ILA should be at least four timesas high as that of the DUT.
Please note: The higher the sampling frequency, the shorter the period of time to capturedata in one piece, because the internal block RAMs fills up more quickly.
There are several ways to provide the ILA clock signal:

1. ILA can access the clock outputs of the FPGA-internal phase-locked loops (PLLs)used by the DUT. The user can select one of the up to 16 signals 2 and ILA establishesthe connection to the Global Mesh for this signal via a CC_BUFG primitive. In prin-ciple, the GateMate FPGA can only route four signals in the Global Mesh. If morethan four CC_BUFG nets are used in the overall design (which can also be done viathe DUT alone), the Place & Route tool issues a warning and routes the surplus netsin the normal routing structure.
2. Alternatively, a GPIO input signal can be selected as the ILA clock.

ILAcop.py automatically tries to find the clock sources in the top level of the DUT byusing keywords. The first input signal that contains the keywords clk or clock inits name is automatically set as the clock signal. The user can change this defaultsetting and select any other GPIO input instead. ILA connects the selected input sig-nal with a CC_BUFG primitive to the Global Mesh.
3. Finally, if the DUT does not have a suitable clock, the ILA design can use its own PLL.This assumes that the DUT does not use all four PLLs of theGateMate FPGA. The PLLis configured via the interactive shell and ILA connects the PLL output signal with a

CC_BUFG primitive to the Global Mesh.
The sampling frequency defines the delay between data samples. The ILA design has beensuccessfully tested with sampling frequencies exceeding 200 MHz. The maximum sam-pling frequency can be increased by a smaller signal vector, as this may speed up the crit-ical path.
If an additional PLL is set up, the following guidelines must be observed:

1. The desired ILA clock frequency can be entered in the interactive shell.
2. The default setting assumes that a frequency of 10 MHz is used as the external clockreference. If this is not the case, the reference frequency is specified with the -foption of ILAcop.py.
3. The PLL output offers four selectable phases in 90-degree steps. Any phase can beselected with the -d option of ILAcop.py (0 = 0°, 1 = 90°, 2 = 180°(default), 3 = 270°).Sampling always takes place on the rising edge.

3.4 Recording Length

During the ILA’s recording process, the captured data is stored to the internal block RAMsof the GateMate FPGA. For this reason, the recording length depends on the number offreely available block RAMs.
2 The GateMate FPGA has 4 PLLs with 4 clock outputs each.

16 of 56 UG1005 August 2025

CCGM1A1 ILA Functionality
Cologne
Chip

It is NRAM = 32 the number of 40 k block RAMs of the GateMate FPGA CCGM1A1. Dueto internal requirements of the ILA design, only a maximum of 30 block RAMs should beused, which is set inconfig.pyby the default parameter setting ‘available_BRAM=30’(see Section 5.8).
ILAcop.py determines the number of block RAMs occupied by the DUT and calculates thenumber of 40 k block RAMs available for ILA design with

NRAM_ILA = avaiable_BRAM−NRAM_DUT (1)
The maximum number of data samples Nsmpl with small signal vectors where the num-ber of bits in the signal vector (data width) is wsmpl ⩽ 20, depends on 3

N ′ =

 NRAM,ILA , NRAM,ILA ⩽ 6

6 , NRAM,ILA > 6
, (2)

and it is

Nsmpl =



32768·N ′ , wsmpl = 1

16384·N ′ , wsmpl = 2

8192 ·N ′ , 3 ⩽ wsmpl ⩽ 5

4096 ·N ′ , 6 ⩽ wsmpl ⩽ 10

2048 ·N ′ , 11 ⩽ wsmpl ⩽ 20

. (3)

For larger signal vectors withwsmpl > 20, the maximum number of data samples dependson the limit factor

W =

⌊
NRAM,ILA⌈wsmpl

40

⌉
⌋

(4)
and it is

Nsmpl = 1024 ·

 W , W ⩽ 6

6 , W > 6
. (5)

ILA performs these calculations automatically and lets the user select the desired record-ing length from a list of possible durations, e.g.:

3 The value 6 forms a decision limit that is based on the ILA’s internal RAM structure. The block RAMs arecascaded in order to capture more data. The maximum cascading depth is 6 in order to meet the timingrequirements. Therefore, the value 6 in equation 2 is to be understood as the upper limit for the depthof cascading.

UG1005 August 2025 17 of 56

Cologne
Chip ILA Functionality CCGM1A1

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Note !! !! The capture duration must be defined . !! The maximum duration depends on: !! − a va i l a b l e ram !! − width of the sample !! − sampling frequency !! !! !
Please choose one of the following durations :
−−−−−−Please choose one of the following durations : −−−−−−+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+| # | smp_cnt | duration [us] | FIFO Cascade | FIFO |+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+| 1 | 1024 | 102.4 | 3 x 1 | 40 x 1024 || 2 | 2048 | 204.8 | 3 x 2 | 40 x 1024 || 3 | 3072 | 307.2 | 3 x 3 | 40 x 1024 || 4 | 4096 | 409.6 | 3 x 4 | 40 x 1024 || 5 | 5120 | 512.0 | 3 x 5 | 40 x 1024 || 6 | 6144 | 614.4 | 3 x 6 | 40 x 1024 |+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+
Total Capture duration (choose between 1 and 2) : 2
############# Capture duration ############### ## Sample count = 8192 ## Capture duration = 819.2 us ## ##

3.5 Input Control

One input signal or signal bus of the top-level entity of the DUT can be overwritten. Pleasenote that this signal is then no longer connected to the IO pin(s) of the FPGA. If this func-tion is activated, a binary value (1 or 0) can be assigned to the relevant signal, which isused as a constant value at runtime. This is set before the start of data capturing.
If a signal bus is selected, the whole bus or only partial sections can be overwritten withall 0’s or all 1’s. The bit selection is done in the same way as described in Section 3.2.
However, only one input signal or signal bus can be selected for this function.

3.6 Reset Control

Normally, ILA has no influence on the reset control of the DUT. ILA and DUT are startedautomatically after gateware upload. ILA uses the CC_USR_RSTN primitive for reset. TheDUT is started via the reset condition implemented in the DUT. This can also be the
18 of 56 UG1005 August 2025

CCGM1A1 ILA Functionality
Cologne
Chip

CC_USR_RSTN primitive or any dedicated I/O input signal of the FPGA as shown in Fig-ure 5. Since ILA needs some time after startup to begin data capturing, the DUT cannotbe observed during this startup phase in normal operation mode.
GateMate FPGA

CC_USR_RSTN

USR_RSTN

...

...

...

device pins

ILA design

...

ILA reset

DUT

reset

input signals

output signals...

I/O signals...

...

GateMate FPGA

...

...

...

device pins

reset

CC_USR_RSTN

USR_RSTN

ILA design

...

ILA reset

DUT

reset

input signals

output signals...

I/O signals...

...

Figure 5: DUT reset in normal operation mode (left: reset together with ILA via primitive, right: reset
via input pin)

GateMate FPGA

CC_USR_RSTN

USR_RSTN

...

...

...

device pins

ILA design

ILA reset

...

1= hold reset

DUT

reset

input signals

output signals...

I/O signals...

...

GateMate FPGA

CC_USR_RSTN

USR_RSTN

...

...

...

device pins

ILA design

...

1= hold reset

ILA reset

DUT

reset

input signals

output signals...

I/O signals...

...

reset

Figure 6: DUT reset with reset control function (left: reset via primitive, right: reset via input pin)

To resolve this problem, the user can enable the reset control function during configura-tion with the interactive shell. This allows the user to reset the DUT during runtime. ILAremains active during this process. The user can then terminate the DUT reset state in
UG1005 August 2025 19 of 56

Cologne
Chip ILA Functionality CCGM1A1

the menu. The block diagram of the reset control function is shown in Figure 6. The usercan manually start the DUT operation via the menu of the interactive shell (start capture).This function allows the user to analyze the startup process of the DUT immediately aftera reset.
Please note that ILA treats the reset signal as active LOW.

20 of 56 UG1005 August 2025

CCGM1A1 ILAcop.py Parameters and Options
Cologne
Chip

4 ILAcop.py Parameters and Options

The control program ILAcop.py is used to configure and execute the ILA design with aDUT. The script is stored in the app/ folder. Program options and parameters are shownwith the following call:
$ > python3 ILAcop.py --help

usage : python3 ILAcop . py [Commands]
ILA version : 1 . 1 . 1
GateMate ILA control program .With this script , you can configure and execute the ILA with a design under te s t (DUT

↪→) .
Commands:config Configure the ILA .

−vlog SOURCE Paths to the Verilog source code f i l e s .
−vhd SOURCE Paths to the VHDL source code f i l e s .
−t NAME Top l e ve l entity of the design under te s t .
−ccf SOURCE Folder containing the . ccf f i l e of the design under

↪→ te s t .
−s SPEED Configure ILA for best performance . Max Sample

↪→ Width = 40, the number of samples depends on the sample width .
−f MHz Defines the external clock frequency in MHz (

↪→ default i s 10.0 MHz) .
−sync LEVEL Number of r e g i ste r l e ve l s via which the sampled

↪→ signals are synchronised (default : 2)
−d DELAY ILA PLL Phase s h i f t of sampling frequency . 0=0◦ ,

↪→ 1=90◦ , 2=180◦ , 3=270◦ (default : 2) .
−opt Optimizes the design by deleting a l l unused

↪→ signals before design evaluation .(optional) Subcommands config :
−create_json : Creates a JSON f i l e in which the logic analyzer can be

↪→ configured .NOTE: Without the subcommand the configurations are requested step by
↪→ step via the terminal .

reconfig Configures the ILA based on a JSON f i l e . With this option you have to
↪→ specify a JSON f i l e with −l [filename] . json .

s t a r t Starts the communication to the ILA with the l a s t uploaded config
−s The −s parameter prevents the FPGA from being reconfigured on

↪→ r e s ta r t .
options :

−h, −−help show this help message and exit
−−version show program' s version number and exit

UG1005 August 2025 21 of 56

Cologne
Chip ILAcop.py Parameters and Options CCGM1A1

Common options (mode-independent):

-h, --help Show this help message and exit.
--version Show ILA version number and exit.
--showdev Outputs all found FTDI devices including their USB ports and exit.
--clean Delete all output files created by previous calls of the programin the directories log/, net/, p_r_out/, app/vcd_files/,

app/save_config/, and app/config_design/.
-wd WORK_DIR Folder from which Yosys will start the synthesis of the DUT. This optionhas only to be used if the default directory ../../bin/yosys/ doesnot fit.

22 of 56 UG1005 August 2025

CCGM1A1 ILAcop.py Parameters and Options
Cologne
Chip

Modes:

config Configures ILA via the interactive shell, creates the FPGA bitstream file(gateware), loads the FPGA with it and puts the DUT and ILA into operation.In addition, the interactive shell writes a JSON file with the settings. Thiscan be used again later to restart the DUT and ILA without having to makethe entries in the interactive shell again.
The JSON file can be edited to adjust settings manually and then read inlater by ILA for setup (see mode reconfig).

config
Interactive

shell
Tool chain

(Yosys, P&R)
Load

bitstream �le
Start

DUT & ILA

Write JSON and

bitstream �le

Figure 7: ILA mode config

reconfig Configures ILA based on a JSON file, whereby the user can change therecording and pre-trigger lengths. With this setting, a new FPGA bitstreamfile is generated and uploaded. The DUT and ILA are then put into operation.

recon�g

Read JSON �le,
enter new

recording length

Load
bitstream �le

Start
DUT & ILA

Tool chain
(Yosys, P&R)

Write JSON and
bitstream �le

Figure 8: ILA mode reconfig

start Configures ILA based on the last setup, optionally loads the FPGA bitstreamfile and puts the DUT and ILA into operation.

start
Start

DUT & ILA
Keep last
ILA setup

Load
bitstream �le

(optional)

Figure 9: ILA mode start

UG1005 August 2025 23 of 56

Cologne
Chip ILAcop.py Parameters and Options CCGM1A1

Options for mode config:

-vlog SOURCE Paths to the DUT Verilog source code files. Using the flag, provideone or more paths to directories containing the respective source codefiles. Multiple paths are separated by a space. The program will searchfor all Verilog files and build the design. Please note that subdirecto-ries are not searched. This option can be combiend with -vhd option.If neither of the two options is specified, the programm exits with anerror message.
-vhd SOURCE Paths to the DUT VHDL source code files. Using the flag, provide one ormore paths to directories containing the respective source code files.Multiple paths are separated by a space. The program will search for allVHDL files and build the design. Please note that subdirectories are notsearched. This option can be combiend with-vlog option. If neither ofthe two options is specified, the programm exits with an error message.
-t NAME Top level entity of the DUT. This option is required to build the design.
-ccf SOURCE Path to the .ccf file of the DUT. This option is only required if the con-straints file is not in the same folder as the given source code. All spec-ified source code directories are searched.
-f MHz Defines the external PLL reference frequency in MHz as a floating-point value (default is 10.0 MHz).

This option is only relevant if the ILA design uses its own PLL for clockgeneration.
-sync LEVEL Number of register levels via which the sampled DUT signals are syn-chronized. This option is used if the sampled signals are not synchro-nized to the ILA clock (default: 2).
-d DELAY Set PLL phase shift of ILA sampling frequency: 0 = 0°, 1 = 90°, 2 =180°(default) and 3 = 270°. Sampling always takes place on the risingedge. In most cases, the default setting is the best value. If there aretiming problems, the sampling phase can be changed.

If all sampled signals are generated on the same edge of a DUT clock andthis is also the ILA clock frequency, then it usually makes sense to cap-ture data in phase opposition, i.e. 180°. If the sampled signals are gen-erated on both the falling and the rising clock edge, a phase setting of90°or 270°can lead to better results. The optimum setting depends onthe DUT and the sampled signals.
This option is only relevant if the ILA design uses its own PLL for clockgeneration.

-opt Optimizes the design by deleting all unused signals before design evalu-ation. This option should only be used if it does not eliminate any signalsduring synthesis that are required for troubleshooting with ILA. If thishappens, the DUT will contain unused signals that have been selectedfor observation by ILA. In this case, the user should check the DUT im-plementation for possible design errors.

24 of 56 UG1005 August 2025

CCGM1A1 ILAcop.py Parameters and Options
Cologne
Chip

-create_json: This option generates a JSON file without running the interactive shellcompletely. Furthermore, no bitstream file is generated. Neverthe-less, ILAcop.py analyzes the DUT to write project-related content intothe JSON file after the user has entered the ILA clock source and thereset function. The user must then subsequently fill the file with suit-able settings. This JSON file can later be used with the reconfigmode to let Yosys generate the bitstream file and run the DUT and theILA design.
-s This option switches to fast ILA mode (expert setting). It is only usedin special cases when ILA needs to capture particularly quickly. Onlyone block RAM is used, which greatly reduces the number of data val-ues that can be recorded, but results in a compact ILA circuit and fastblock RAM access.

Option for mode reconfig:

-l FILE Without this parameter, the last written JSON file is used to set up ILAcop.py.A different JSON file can be selected with this option.

Option for mode start:

-s The FPGA is normally reloaded in mode startwith the existing bitstream file. Thiscan be prevented with this option. Instead, the FPGA retains its last loaded bitstreamfile.

Examples of use:

$ > python3 ILAcop.py config -vlog ..\textbackslash example_dut\
↪→ textbackslash blink\textbackslash src\textbackslash ~-t blink

Calls the interactive shell for ILA setup specification, automatically runs the toolchainwith the specified path for Verilog source files and top level module blink, creates andloads the gateware, finally starts the DUT and ILA design.
$ > python3 ILAcop.py reconfig -l ila_config_blink_2025_03_30_13\

↪→ _02_00.json

Reads the specified JSON file, loads the gateware, finally starts the DUT and ILA design.
$ > python3 ILAcop.py start

Loads the gateware, starts the DUT and ILA design while retaining the last ILA settings.
UG1005 August 2025 25 of 56

Cologne
Chip ILA Setup File config.py CCGM1A1

5 ILA Setup File config.py

5.1 Common Remarks

The setup file config.py is already introduced in Chapter 2.5. All permitted entries arepresented in detail in this chapter.
General notes on the file syntax:
• The basic syntax is “<parameter> = <value>”.
• Character strings should be enclosed in single quotation marks. This is necessary ifthey contain spaces or special characters.
• Integer values must not be enclosed in quotation marks.
• Parameters and values are case sensitive.
• For paths, slash must be used for Linux. For Windows, either slash or backslash canbe used.
• Comment up to the end of the line is introduced with the hash character #.

5.2 Synthesis Tool and Calling Parameters

The executable synthesis file and its parameters can be set as follows:
YOSYS = 'yosys'
YOSYS_FLAGS = '-nomx8'

If the operating system does not know the path to the executable, it must be entered inthe configuration file, e.g.
YOSYS = '/home/dave/cc-toolchain-linux/bin/yosys/yosys'

The parameters must be set according to the requirements of the user. The default settingis ’-nomx8’ to exclude the use of CC_MX8 multiplexer cells in the output netlist.
Please see the Yosys documentation � for more information.
5.3 Place&Route Tool and Calling Parameters

The Cologne Chip Place & Route executable file can be downloaded from this link �.
PR = 'p_r'
PR_FLAGS = '-cCP +uCIO'

If the operating system does not know the path to the executable, it must be entered inthe configuration file, e.g.
26 of 56 UG1005 August 2025

https://github.com/YosysHQ/yosys
https://colognechip.com/programmable-logic/gatemate/#tab-313425

CCGM1A1 ILA Setup File config.py
Cologne
Chip

PR = '/home/dave/cc-toolchain-linux/bin/p_r/p_r'

The ’-cCF’ flag specifies that a .ccf file is to be used. This file is automatically appendedby the program and must therefore not be specified in the setup file.
The ’+uCIO’ flag must not be removed. It switches the configuration GPIO bank of theFPGA so that these can be used as normal user IOs after configuration. This is necessaryfor the ILA to be able to communicate via the same connection as it was configured. Theflag can only be omitted if other IOs are selected for the SPI communication of the ILAdesign.
Please see the GateMateTM FPGA Datasheet � for more information concerning thePlace & Route options
5.4 FPGA Bitstream Upload

The software for the configuration of the GateMate FPGA, as well as the respective pro-gramming mode, can be customised under the following parameters:
UPLOAD = 'openFPGALoader'
UPLOAD_FLAGS = '-b gatemate_evb_jtag'

Other programs to load the bitstream file into the FPGA can of course also be specified. Ifthe operating system does not know the path to the executable, it must be entered in theconfiguration file, e.g.
UPLOAD = '/home/dave/cc-toolchain-linux/bin/openFPGALoader/

↪→ openFPGALoader'

The example above uses the GateMateTM FPGA Evaluation Board. Please note, that thecorrect programming mode must be set on the board. The configuration file is defaultedto theGateMateTM FPGA Evaluation Boardand configures it directly via the JTAG interface.
In the following example, again the GateMateTM FPGA Evaluation Board is used and theILA design communicates with the ILAcop.py via SPI in passive mode:
UPLOAD_FLAGS = '-b gatemate_evb_spi'

Alternatively, other settings ofUPLOAD_FLAGS can be selected, namely one of the follow-ing:
UPLOAD_FLAGS = '-b gatemate_pgm_spi'

UPLOAD_FLAGS = '-b gatemate_pgm_jtag'

UG1005 August 2025 27 of 56

Cologne
Chip ILA Setup File config.py CCGM1A1

Finally, the Olimex evaluation board 4 can be used as follows:
UPLOAD_FLAGS = '-b olimex_gatemateevb'

Additional options are available, as shown in the following example:
UPLOAD_FLAGS = '-b gatemate_evb_spi -f --verify'

-f does not load the bitfile into the FPGA, but writes it into the on-board flash memory.
If this function is used, --verify can also be entered to verify that the bitfile has cor-rectly been stored in the flash memory.
Please see the openFPGALoader documentation � for more information about the uploadoptions.
5.5 Waveform Viewer

Any waveform viewer can be used with ILA, that can read a .vcd file, e.g.
REPRESENTATION_SOFTWARE = ['gtkwave']
REPRESENTATION_FLAGS = ['--save', 'save.gtkw']

All arguments for GTKWavemust be stored in an array. The ’--save’flag specifies a filein which the view configurations made in GTKWave will be stored.
If the operating system does not know the path to the executable, it must be entered inthe configuration file, e.g.
REPRESENTATION_SOFTWARE = '/home/dave/gtkwave/bin/gtkwave'

Please note that the software places the .vcd file name between
REPRESENTATION_SOFTWARE and REPRESENTATION_FLAGS when it is called.
5.6 ILA Connection to External Hardware

In addition to theUPLOAD_FLAGSparameter already described in Section 5.4, ILA requiresfurther information on how the connection to the FPGA is established.
UPLOAD_FLAGS = '-c gatemate_pgm'
CON_DEVICE = 'pgm'

Different values can be specified for CON_DEVICE depending on the hardware used:
’pgm’: GateMateTM FPGA Programmer is used in JTAG or SPI mode (all versions, regard-less of whether it has activatable level shifters).
4 Open Source SDR Lab Kintex-7 325t FPGA PCIE Development Board

28 of 56 UG1005 August 2025

https://trabucayre.github.io/openFPGALoader/vendors/colognechip.html

CCGM1A1 ILA Setup File config.py
Cologne
Chip

’evb’: GateMateTM FPGA Evaluation Board is used in JTAG or SPI mode (all versions, re-gardless of whether it has activatable level shifters).
’oli’: Olimex evaluation board is used (all versions, regardless of whether it has activat-able level shifters).
’cust’: Freely configurable mode with activatable level shifters. With this option, theGPIOs must be set appropriately with the parameters cust_* before the FTDI chipis addressed (see below).
’free’: Freely customizable mode without activatable level shifters.
If the specific user hardware uses level shifters between the FTDI chip and the
GateMate FPGA, the following parameters must also be adjusted:
CON_DEVICE = 'cust'
cust_gpio_direction_pins = 0x17F0
cust_gpio_direction = 0x1710
cust_gpio_write = 0x0210

If the GateMateTM FPGA Programmer is used, the FTDI chip must be specified as follows:
CON_DEVICE = 'pgm'
CON_LINK = 'ftdi://ftdi:232h/1'

For the GateMateTM FPGA Evaluation Board, a different setting is necessary:
CON_DEVICE = 'evb'
CON_LINK = 'ftdi://ftdi:2232h/1'

The Olimex evaluation board does not need this parameter.
Any other user hardware with activatable level shifters must be set up according to theused FTDI interface chip.
5.7 SPI Frequency

ILAcop.py communicates with the FPGA via an SPI interface. The SPI clock frequencyis preset to 20 MHz. To use a different clock frequency, for example 10 MHz, enter thefollowing line in config.py:
freq_max = 10000000

5.8 Block RAM

The FPGA CCGM1A1 has a total of 32 block RAMss. The ILA design can use all free blockRAMs for data capturing that are not occupied by the DUT.
For stability reasons, the actual number of block RAMs should not be made available forthe DUT and the ILA design. The default setting is 30 block RAMs:
UG1005 August 2025 29 of 56

Cologne
Chip ILA Setup File config.py CCGM1A1

available_BRAM = 30 # 40k RAM blocks

This value should not be increased.
However, a smaller value may be set to reduce the length of the data recording if this isdesired.
Based on the given number of signals to be analyzed and the available number of blockRAMs, the program automatically calculates how FIFOs can be cascaded in parallel andin series to achieve different numbers of data samples to be stored. The user can thenchoose between various numbers of signals to analyze (see Section 8.3 from page 37).The program displays the duration time in microseconds, the total data sample count,the constructed FIFO cascade, as well as the width and depth of the individual FIFOs used(see Section 3.4).

30 of 56 UG1005 August 2025

CCGM1A1 Hardware Setup
Cologne
Chip

6 Hardware Setup

The GateMateTM FPGA Evaluation Board or customer hardware can be used for ILA. In ei-ther case, the computer must be connected to the FPGA hardware via the USB interface,as shown in Figure 10. The connection to the FPGA is then made either via the GateMate’sSPI or JTAG interface.
Printed circuit board
(GateMate FPGA Evaluation Board
or customer hardware)

GateMate
FPGA

SPI or JTAG
interface

USB USB bridge

Flash
SPI

Host Controller

USBILAcop

Wave
viewer

Figure 10: ILA hardware setup

The FPGA datastream can be loaded from the flash memory or it can be transferreddirectly from the computer. To do this, the correct configuration mode must be setfor the device, as documented in the GateMateTM FPGA CCGM1A1 Datasheet � or the
GateMateTM FPGA Evaluation Board Datasheet �.

Host Controller

USBILAcop

Wave
viewer

GateMate FPGA
Programmer

USB USB bridge

Customer hardware

GateMate
FPGA

SPI or JTAG
interface

Flash
SPI

SPI or JTAG

Figure 11: ILA hardware setup using the GateMateTM FPGA Programmer

If a customer printed circuit board is used, the USB bridge does not have to be part ofthis PCB. Instead, the GateMateTM FPGA Programmer Board Datasheet� can be used andconnected to a JTAG or SPI interface of the customer PCB as shown in Figure 11.
In any case, make sure that the program has access rights to the USB port to which theFPGA is connected. This is done with a call
python3 .\ILAcop.py --showdev

which shows all available FTDI interfaces, e.g.
UG1005 August 2025 31 of 56

https://www.colognechip.com/docs/ds1001-gatemate1-datasheet-latest.pdf
https://www.colognechip.com/docs/ds1003-gatemate1-evalboard-latest.pdf
https://www.colognechip.com/docs/ds1002-gatemate1-programmer-1v3-latest.pdf

Cologne
Chip Hardware Setup CCGM1A1

Available interfaces:
ftdi://ftdi:2232:E1-31B0220/1 (GateMate FPGA Evalboard 3.2)
ftdi://ftdi:2232:E1-31B0220/2 (GateMate FPGA Evalboard 3.2)

In this example, the dual port USB bridge FT2232 of the
GateMateTM FPGA Evaluation Board is displayed.

32 of 56 UG1005 August 2025

CCGM1A1 ILA SPI Interface
Cologne
Chip

7 ILA SPI Interface

When ILAcop.py loads the bitstream file into the FPGA via the SPI interface, the SPI pinsof the configuration controller are involved. Later, when the DUT is in operation and
ILAcop.py controls the data capturing, this is done via the SPI interface, too. But thereare a few differences to note, as shown in Figure 12:
DUT setup: The bitstream can be loaded via the JTAG or SPI interface of the

GateMate FPGA. In both cases the configuration controller is involved and there-fore the pins of the interface are fixed. In the case of the SPI interface, the FPGAoperates in SPI active mode and ILAcop.py in SPI passive mode.
DUT operation: ILAcop.py always controls data capturing via an SPI interface. Typically,and this is the default setting, the same FPGA pins are used as for the bitstreamupload. It is also possible to connect the SPI interface of ILAcop.py to other GPIOpins of the FPGA. This is usually only useful if (a) the bitstream was loaded via JTAGand (b) the SPI interface of the FPGA configuration controller has an atypical usein the operation of the DUT. However, ILAcop.py is now in SPI active mode and theFPGA in SPI passive mode.

ILAcop.py

SPI active

ILAcop.py

SPI passive
bit�le

GateMate FPGA

SPI active
(part of the FPGA
con�guration controller)

GateMate FPGA

SPI passive
(part of ILA)

control &

data download

Figure 12: SPI interface of ILAcop.py

The pins used by the SPI-passive controller of the gateware to communicate with the
ILAcop.py can be adjusted in the file src/ILA_top.ccf. They are located by default atthe following pins:
Pin_in "i_sclk_ILA" Loc = "IO_WA_A5" | SCHMITT_TRIGGER = true;
Pin_in "i_mosi_ILA" Loc = "IO_WA_A4";
Pin_out "o_miso_ILA" Loc = "IO_WA_B3";
Pin_in "i_ss_ILA" Loc = "IO_WA_B4";

UG1005 August 2025 33 of 56

Cologne
Chip Use of ILA CCGM1A1

8 Use of ILA

8.1 Workflow

The ILA workflow is shown in Figure 13. In addition to the ILA design, the user designto be examined, called device under test (DUT), is of course also required. The procedureroughly consists of the following steps which are all grouped together in ILAcop.py:
1. Execution of Yosys to analyze the DUT signals.

A list of all DUT signals is generated.
2. Configuration of ILA in an interactive Shell.

Every time ILA was configured with the interactive shell, the configuration is storedin a JSON file. The file can be edited and ILA can be executed again at a later timewith the configurations defined in the file. For more informations see Section 8.4.
3. Another call of Yosys to read both the user design and the ILA design for synthesis.

After the user has configured ILA, the entire design consisting of the user designand the ILA design is synthesized.
4. Execution of Place & Route to generate the FPGA gateware (bitstream file).

The output file will be stored in pr_out/.
5. Configuration of the GateMate FPGA.

Then the toolchain will be executed to bring the DUT together with the ILA designon the FPGA. If this has been successfully completed, the communication to the ILAdesign on the FPGA is automatically started.
6. Operation of the FPGA circuitry and analysis of the signals according to the previousILA configuration.

Once the DUT has been put into operation together with the ILA design, trig-ger monitoring, data capturing and downloading run automatically. The user canchange the trigger condition during operation if desired.
7. Examination of the exported wave form.

Once data recording is complete, the stored data is automatically downloaded to thecomputer into the directory app/vcd_files/ and displayed in the wave viewer.

34 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

ILA work�ow

User design
(DUT)

Signal
analysis

Synthesis

Place & Route

Gateware
(bitstream �le)

External �ash
programming or
FPGA con�guration
via SPI or JTAG

openFPGALoader GateMate TM

programmer scripts

ILA design

Wave viewer

ILAcop.py

ILA setup

Trigger
condition

&
setup

SPI

Figure 13: Overview of the ILA workflow

UG1005 August 2025 35 of 56

Cologne
Chip Use of ILA CCGM1A1

8.2 The ILAcop.py Menu

After the gateware has been loaded into the FPGA, ILAcop.py displays the menu and waitsfor the user’s selection. The following functions can be executed:
0 −− exit1 −− change Trigger2 −− s t a r t capture3 −− reset ILA (resets the config of the ILA)4 −− reset DUT (hold the DUT in reset unti l the capture s ta r ts)
Enter your choice : 1

0 – exitThe interactive shell ILAcop.py is terminated. The DUT continues to run. The inter-active shell can be restarted with
ILAcop start -s

without interrupting the running DUT process.
1 – change triggerThe ILA design and DUT are stopped. The interactive shell then asks the user againfor the trigger condition. Either a single trigger event or a trigger sequence can bespecified. After this, a new bitstream file is generated and loaded into the FPGA.

ILAcop.py then presents the menu again and the user can continue with the analysisof the DUT, which is usually done with option 2.
2 – start captureThe ILA design waits for the trigger event and then starts data capturing. WhileILA is waiting for the trigger event, the user can cancel the process at any time bypressing the ENTER key. After the end of data capturing, the data is automaticallydownloaded to the computer and displayed in the specified wave viewer. ILAcop.pythen presents the menu again so that the user can continue with the DUT analysis.
3 – reset ILA (resets the configuration of the ILA)The trigger event is reset. The ILA design then waits again for the trigger event torestart data capturing.
4 – reset DUT (hold the DUT in reset until the capture starts)This function can only be used if the reset control function is activated (see Sec-tion 3.6 on page 18). If option 4 is selected, the DUT reset is activated and remainsactive until the user either enters option 4 again to end the reset or option 2 to startthe wait for the trigger event and then perform the data capturing.

36 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

8.3 Configuration Example with the Interactive Shell

This section provides step-by-step instructions on how to configure ILA with the inter-active shell using the Game of Life (GoL) example design ws2812_gol.vhd 5.
To visualize the status of the GoL matrix, an 8×8 WS2812 LED element is connected tothe GateMateTM FPGA Evaluation Board . This receives the three bytes of the RGB value foreach of the 64 LEDs in turn via a serial interface. For this purpose, the states of the matrixare temporarily stored in the internal RAM. Another process reads the data, serializes itand then outputs it in a WS2812-compliant manner.
It is not necessary to actually have the WS2812 LED matrix connected to the evaluationboard. The GoL circuitry example and the demonstration of the ILA will of course alsowork without this output unit.

Figure 14: GateMateTM FPGA Evaluation Board with WS2812 LED matrix

Open a console, change to the directory app/ of the ILA installation and call ILAcop.py 6:
gatemate_ila\app> python3 ILAcop.py config -vhd ..\example_DUT\ws2812_gol

↪→ \src\ -t ws2812_gol

5 ws2812_gol implements the Conway’s Game of Life (GoL) simulation on an 8×8 matrix. Each cell ofthe matrix has either the state ‘dead’ or ‘alive’ and it has eight neighbors. Cells at the edges have vir-tual neighbors outside the matrix that are basically dead. The initial state of the matrix is generated atrandom.
• A dead cell becomes alive when it has exactly three living neighbors.• A living cell becomes dead if it has more than three or less than two living neighbors.
With the gol_next_gen signal, all cells calculate their next state simultaneously, depending on theneighboring states that are present at the time of the clock edge. The next state is then output syn-chronously within one clock cycle.

6 ILAcop.py is a console-only application.

UG1005 August 2025 37 of 56

Cologne
Chip Use of ILA CCGM1A1

The path to the top level entity ws2812_gol of the GoL design may need to be adjusted.
After calling ILAcop.py, the program first outputs the names of the .ccf file and the VeryHigh Speed Integrated Circuit Hardware Description Language (VHDL) source files of theDUT. Then Yosys is called to prepare the design for ILA, which extract all DUT signals ofthe modules, among other things, afterwards.
Since ILAcop.py uses the block RAMs not occupied from the DUT for data sample storage,the block RAMs used by the DUT are also analyzed and output.
################# ccf Fi l e ################### ## ws2812_gol . ccf ## ##
################ vhdl Fi l e s ################## ## a s e r i a l . vhd ## edge_detection . vhd ## gol_8x8_control . vhd ## g o l _ c e l l . vhd ## init_package . vhd ## ram . vhd ## ram_to_bit . vhd ## receive_command . vhd ## spi_slave . vhd ## ws2812_gol . vhd ## ##
Examine DUT . . .
############# Block RAM in use ############### ## CC_BRAM_20K in use : 1 ## CC_BRAM_40K in use : 0 ## ##
! NOTE !! !! Now you wi l l be guided through the configuration of the ILA . !! Entering 'e ' exits the process and generates a configurable !! JSON f i l e for the given DUT. !! Enter 'p ' for ' previous ' to backtrack a step . !! !! !

ILA only offers clock sources (see Section 3.3) that are also available in the DUT, supple-mented by the option for the user to select a separate PLLfor ILA and set it to the desiredfrequency.
In this example, the DUT does not use a PLL, which is why only 2 options are offeredbelow:
38 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

! NOTE !! !! In the following , a clock source for the ILA should be selected . !! Usually , the same clk signal that clocks the tested signals s u ff i c e s . !! !! !
Here are the possible ways to provide a clock to the ILA :

1 = Use an external clk input signal .2 = Use an additional PLL with a fr e e l y s e l e c ta b l e frequency (additional net of the
↪→ global Mesh are required) .

please choose between 1 and 2: 1
########### found DUT clk source ############# ## Input serves as ILA clk source : "clk" ## ##
Do you want to change the clk source ? (y : yes /N:no) : N

The clock source is accepted and now reset settings have to be specified. ILAcop.py de-termines the reset signal, outputs it and asks the user whether the selection should beaccepted or another reset signal should be selected:
! User control lable reset !! !! The ILA can hold the DUT in reset unti l capture s ta r ts . !! This makes i t possible to capture the s t a r t process of the DUT !! Attention , the i l a tr e a ts the signal as active LOW !! !! !

The following options are a va i l a b l e :
1 = Use an external reset input signal . Potential input found : reset2 = Deactivate this function .

please choose between 1 and 2: 1
Would you l i k e to choose a d i ffe r e n t user control lable input than ' reset ' ? (y : yes /N:

↪→ no) : N

ILAcop.py now outputs all DUT signals found. The signals are listed in a table, includingtheir bit width and the module name in which they were found. The table also showswhether a signal has already been selected for analysis. It is possible to filter the signalsby module, e.g. to display only the signals of a specific module. This is particularly usefulfor large designs.
UG1005 August 2025 39 of 56

Cologne
Chip Use of ILA CCGM1A1

In addition, the maximum possible number of bits to be analyzed and the number of bitscurrently selected are displayed. If this is exceeded, a corresponding warning appears.
! NOTE !! !! You wi l l be prompted to s e l e c t signals for analysis from those found in your !! design under te s t . !! !! !

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ws2812_gol −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−+| # | name | range | selected | hierarchy |+−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−+| 1 | byte_receive | [7:0] | [] | || 2 | byte_send | [7:0] | [] | || 3 | clk | 1 | [] | |. . .| 38 | g o l _ i n i t | 1 | [] | \ golx64 . || 39 | gol_next_gen | 1 | [] | \ golx64 . || 40 | init_pattern | [63:0] | [] | \ golx64 . || 41 | l i f e _ o u t | [99:0] | [] | \ golx64 . |. . .| 46 | rgb_color | [1:0] | [] | \ golx64 . || 47 | s h i ft_ l i fe _ r o w | [7:0] | [] | \ golx64 . |. . .| 59 | ws2812_ram_addr_wr | [7:0] | [] | \ golx64 . |. . .| 62 | ws2812_rgb_byte_reg | [7:0] | [] | \ golx64 . |. . .| 1166 | shift_rgb_byte | [7:0] | [] | \ ram_to_bit . |. . .| 1171 | ws2812_ram_addr_rd | [7:0] | [] | \ ram_to_bit . |. . .| 1175 | data_out | 1 | [] | \ ram_to_bit . a s e r i a l . |. . .| 1189 | start_ram_to_bit | 1 | [] | |. . .| 1210 | s ta r t_ 1 | 1 | [] | \ write_bram_rec_cmd . || 1211 | start_2 | 1 | [] | \ write_bram_rec_cmd . |+−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 0 (max. 1180) ##
Select signals to be analyzed (0 = finish , f = f i l t e r) : f
(For a better overview, the list is abbreviated here.)
The user can now either enter the number of a signal to include it in the signal vector,or he can shorten the signal list with a module filter or he can end the signal selectionprocedure with the input ‘0’.
40 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

When selecting a signal bus, the user can select individual bits, a range, or even severalindividual bits and ranges for the signal.
If a signal that has already been choosen is selected again, the selection is deselected (tog-gle function).
After each selected signal, the list of signals is displayed again. The previously selectedsignals are entered in the ‘selected’ column, where [’A’] means that the entire signalbus has been selected (‘all’).
The user is then prompted to enter another signal, to change the module filter or to endthe signal selection procedure.
If the module filter is used, only the signals of the selected module are displayed. Theselection of a module looks as follows:
−−−−−−−−−−−−−−−−−−−−− DUT moduls −−−−−−−−−−−−−−−−−−−−−−+−−−−+−−+| # | moduls |+−−−−+−−+| 0 | ws2812_gol . || 1 | ws2812_gol . \ dualportram . || 2 | ws2812_gol . \ golx64 . || 3 | ws2812_gol . \ golx64 . gol_row : 1 . gol_column : 1 . gol . || 4 | ws2812_gol . \ golx64 . gol_row : 1 . gol_column : 2 . gol . |. . .| 65 | ws2812_gol . \ golx64 . gol_row : 8 . gol_column : 7 . gol . || 66 | ws2812_gol . \ golx64 . gol_row : 8 . gol_column : 8 . gol . || 67 | ws2812_gol . \ ram_to_bit . || 68 | ws2812_gol . \ ram_to_bit . addrcnt . || 69 | ws2812_gol . \ ram_to_bit . a s e r i a l . || 70 | ws2812_gol . \ ram_to_bit . shift_cnt . || 71 | ws2812_gol . \ spi_edge_detect . || 72 | ws2812_gol . \ spi_slave . || 73 | ws2812_gol . \ write_bram_rec_cmd . |+−−−−+−−+
Select a module from which you would l i k e to analyze signals : 2

UG1005 August 2025 41 of 56

Cologne
Chip Use of ILA CCGM1A1

−−−−−−−−−−−−−−−− \ golx64 . signals −−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| # | name | range | selected |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| 1 | break_counter | [23:0] | [] || 2 | clk | 1 | [] || 3 | counter_index | [3:0] | [] || 4 | din_spi | [7:0] | [] || 5 | g o l _ i n i t | 1 | [] || 6 | gol_next_gen | 1 | [] || 7 | init_pattern | [63:0] | [] || 8 | l i f e _ o u t | [99:0] | [] || 9 | l i f e _ s h i f t _ c n t | [2:0] | [] || 10 | nachbarn | [35:0] | [] || 11 | neighbours_in | [511:0] | [] || 12 | reset | 1 | [] || 13 | rgb_color | [1:0] | [] || 14 | s h i ft_ l i fe _ r o w | [7:0] | [] || 15 | start_sm_new | 1 | [] || 16 | state_color_to_ram | [2:0] | [] || 17 | t l _ g o l _ s t a t e | [3:0] | [] || 18 | waddr_spi | [2:0] | [] || 19 | write_en | 1 | [] || 20 | write_en_ram | 1 | [] || 21 | write_en_s | 1 | [] || 22 | write_ws2812_out | 1 | [] || 23 | write_ws2812_s | 1 | [] || 24 | writeram | 1 | [] || 25 | ws2812_busy | 1 | [] || 26 | ws2812_ram_addr_wr | [7:0] | [] || 27 | ws2812_ram_addr_wr_s | [7:0] | [] || 28 | ws2812_rgb_byte | [7:0] | [] || 29 | ws2812_rgb_byte_reg | [7:0] | [] |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 0 (max. 1180) ##
Select signals to be analyzed (0 = finish , f = no f i l t e r , c = change f i l t e r) : 5

42 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

The signals of the selected module can now be entered in the list for analysis:
−−−−−−−−−−−−−−−− \ golx64 . signals −−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| # | name | range | selected |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| 1 | break_counter | [23:0] | [] || 2 | clk | 1 | [] || 3 | counter_index | [3:0] | [] || 4 | din_spi | [7:0] | [] || 5 | g o l _ i n i t | 1 | ['A'] || 6 | gol_next_gen | 1 | [] || 7 | init_pattern | [63:0] | [] || 8 | l i f e _ o u t | [99:0] | [] || 9 | l i f e _ s h i f t _ c n t | [2:0] | [] || 10 | nachbarn | [35:0] | [] || 11 | neighbours_in | [511:0] | [] || 12 | reset | 1 | [] || 13 | rgb_color | [1:0] | [] || 14 | s h i ft_ l i fe _ r o w | [7:0] | [] || 15 | start_sm_new | 1 | [] || 16 | state_color_to_ram | [2:0] | [] || 17 | t l _ g o l _ s t a t e | [3:0] | [] || 18 | waddr_spi | [2:0] | [] || 19 | write_en | 1 | [] || 20 | write_en_ram | 1 | [] || 21 | write_en_s | 1 | [] || 22 | write_ws2812_out | 1 | [] || 23 | write_ws2812_s | 1 | [] || 24 | writeram | 1 | [] || 25 | ws2812_busy | 1 | [] || 26 | ws2812_ram_addr_wr | [7:0] | [] || 27 | ws2812_ram_addr_wr_s | [7:0] | [] || 28 | ws2812_rgb_byte | [7:0] | [] || 29 | ws2812_rgb_byte_reg | [7:0] | [] |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 1 (max. 1180) ##
Select signals to be analyzed (0 = finish , f = no f i l t e r , c = change f i l t e r) : 6

UG1005 August 2025 43 of 56

Cologne
Chip Use of ILA CCGM1A1

This step is repeated until all the desired signals have been selected.
−−−−−−−−−−−−−−−− \ golx64 . signals −−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| # | name | range | selected |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+| 1 | break_counter | [23:0] | [] || 2 | clk | 1 | [] || 3 | counter_index | [3:0] | [] || 4 | din_spi | [7:0] | [] || 5 | g o l _ i n i t | 1 | ['A'] || 6 | gol_next_gen | 1 | ['A'] || 7 | init_pattern | [63:0] | [] || 8 | l i f e _ o u t | [99:0] | [] || 9 | l i f e _ s h i f t _ c n t | [2:0] | [] || 10 | nachbarn | [35:0] | [] || 11 | neighbours_in | [511:0] | [] || 12 | reset | 1 | [] || 13 | rgb_color | [1:0] | [] || 14 | s h i ft_ l i fe _ r o w | [7:0] | [] || 15 | start_sm_new | 1 | [] || 16 | state_color_to_ram | [2:0] | [] || 17 | t l _ g o l _ s t a t e | [3:0] | [] || 18 | waddr_spi | [2:0] | [] || 19 | write_en | 1 | [] || 20 | write_en_ram | 1 | [] || 21 | write_en_s | 1 | [] || 22 | write_ws2812_out | 1 | [] || 23 | write_ws2812_s | 1 | [] || 24 | writeram | 1 | [] || 25 | ws2812_busy | 1 | [] || 26 | ws2812_ram_addr_wr | [7:0] | [] || 27 | ws2812_ram_addr_wr_s | [7:0] | [] || 28 | ws2812_rgb_byte | [7:0] | [] || 29 | ws2812_rgb_byte_reg | [7:0] | [] |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 2 (max. 1180) ##
Select signals to be analyzed (0 = finish , f = no f i l t e r , c = change f i l t e r) : 8

The selection of a signal vector also requires the specification of which bits of the vectorare to be analyzed.

44 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

! NOTE !! !! Define a range for the vector to be analyzed . !! you can do this in the following ways : !! 1) Press enter to analyze the entire vector !! 2) Define an area of the vector . (The area should be within the vector area) : !! e . g . : ' [1 : 0] ' !! 3) Individual signals : !! e . g . : ' 1 ' !! 4) Any combination of areas and individual signals !! e . g . : '9 , [7:5] , 3 , [1 : 0] ' !! define Signals in descending order ! !! !! !
wire [99:0] l i f e _ o u t : 88:81 , 78:71 , 68:61 , 58:51 , 48:41 , 38:31 , 28:21 , 18:11
−−−−−−−−−−−−−−−−−−−−− \ golx64 . signals −−−−−−−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+| # | name | range | selected |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+| 1 | break_counter | [23:0] | [] || 2 | clk | 1 | [] || 3 | counter_index | [3:0] | [] || 4 | din_spi | [7:0] | [] || 5 | g o l _ i n i t | 1 | ['A'] || 6 | gol_next_gen | 1 | ['A'] || 7 | init_pattern | [63:0] | [] || 8 | l i f e _ o u t | [99:0] | ['88:81 ' , '78:71 ' , || | | | '68:61 ' , '58:51 ' , || | | | '48:41 ' , '38:31 ' , || | | | '28:21 ' , ' 1 8 : 1 1 '] || 9 | l i f e _ s h i f t _ c n t | [2:0] | [] || 10 | nachbarn | [35:0] | [] || 11 | neighbours_in | [511:0] | [] || 12 | reset | 1 | [] || 13 | rgb_color | [1:0] | [] || 14 | s h i ft_ l i fe _ r o w | [7:0] | [] || 15 | start_sm_new | 1 | [] || 16 | state_color_to_ram | [2:0] | [] |. . .| 26 | ws2812_ram_addr_wr | [7:0] | [] || 27 | ws2812_ram_addr_wr_s | [7:0] | [] || 28 | ws2812_rgb_byte | [7:0] | [] || 29 | ws2812_rgb_byte_reg | [7:0] | [] |+−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 66 (max. 1180) ##
Select signals to be analyzed (0 = finish , f = no f i l t e r , c = change f i l t e r) : 13
(For a better overview, the list is abbreviated here.)

UG1005 August 2025 45 of 56

Cologne
Chip Use of ILA CCGM1A1

The user can now gradually select all the signals to be analyzed. This is not described indetail here.
Hint: For a large design with many signals, it may be easier to create a JSON file to con-figure ILA. In this way, any editor can be used to search for the signal to be ana-lyzed. See Section 8.4 for more information on configuration via a JSON file.
Once all signals have been selected, the configuration process can be continued by enter-ing 0. In this example, the list of signals looks like this:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ws2812_gol −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+| # | name | range | selected | hierarchy |+−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+| 1 | byte_receive | [7:0] | [] | || 2 | byte_send | [7:0] | [] | || 3 | clk | 1 | ['A'] | |. . .| 38 | g o l _ i n i t | 1 | ['A'] | \ golx64 . || 39 | gol_next_gen | 1 | ['A'] | \ golx64 . || 40 | init_pattern | [63:0] | [] | \ golx64 . || 41 | l i f e _ o u t | [99:0] | ['88:81 ' , '78:71 ' , | \ golx64 . || | | | '68:61 ' , '58:51 ' , | || | | | '48:41 ' , '38:31 ' , | || | | | '28:21 ' , ' 1 8 : 1 1 '] | || 42 | l i f e _ s h i f t _ c n t | [2:0] | [] | \ golx64 . |. . .| 46 | rgb_color | [1:0] | ['A'] | \ golx64 . || 47 | s h i ft_ l i fe _ r o w | [7:0] | ['A'] | \ golx64 . |. . .| 59 | ws2812_ram_addr_wr | [7:0] | ['A'] | \ golx64 . |. . .| 62 | ws2812_rgb_byte_reg | [7:0] | ['A'] | \ golx64 . |. . .| 1166 | shift_rgb_byte | [7:0] | ['A'] | \ ram_to_bit . |. . .| 1171 | ws2812_ram_addr_rd | [7:0] | ['A'] | \ ram_to_bit . |. . .| 1175 | data_out | 1 | ['A'] | \ ram_to_bit . a s e r i a l . || 1176 | reset | 1 | [] | \ ram_to_bit . a s e r i a l . || 1177 | run | 1 | ['A'] | \ ram_to_bit . a s e r i a l . |. . .| 1210 | s ta r t_ 1 | 1 | [] | \ write_bram_rec_cmd . || 1211 | start_2 | 1 | [] | \ write_bram_rec_cmd . |+−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
Number of selected b i ts to be analysed #### ## 110 (max. 1180) ##
Which signals should be analyzed (0 = finish) ? 0
(For a better overview, the list is abbreviated here.)

46 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

The user is then prompted to enter the capturing duration.
Taking into account the available_BRAM setting (see Section 5.8), all block RAMs thatare not occupied by the DUT are made available to the ILA design.
Only values that are possible due to the available memory are displayed here:
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Note !! !! The capture duration must be defined . !! The maximum duration depends on: !! − a va i l a b l e ram !! − width of the sample !! − sampling frequency !! !! !

−−−−−−Please choose one of the following durations : −−−−−−+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+| # | smp_cnt | duration [us] | FIFO Cascade | FIFO |+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+| 1 | 4096 | 40.96 | 1 x 1 | 10 x 4096 || 2 | 8192 | 81.92 | 2 x 1 | 5 x 8192 || 3 | 12288 | 122.88 | 1 x 3 | 10 x 4096 || 4 | 16384 | 163.84 | 2 x 2 | 5 x 8192 || 5 | 20480 | 204.8 | 1 x 5 | 10 x 4096 || 6 | 24576 | 245.76 | 2 x 3 | 5 x 8192 || 7 | 32768 | 327.68 | 2 x 4 | 5 x 8192 || 8 | 40960 | 409.6 | 2 x 5 | 5 x 8192 || 9 | 49152 | 491.52 | 2 x 6 | 5 x 8192 |+−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−+
Total Capture duration (choose between 1 and 9) : 9
############# Capture duration ############### ## Sample count = 49152 ## Capture duration = 491.52 us ## ##

The user can then set the pre-trigger by specifying the number of captured data samplesbefore the trigger event:
Enter the number of capture samples before trigger activation : 200
Capture duration before Trigger ####### ## Sample count = 200 ## Capture duration = 20.2 us ##

UG1005 August 2025 47 of 56

Cologne
Chip Use of ILA CCGM1A1

In the next step, the user can disconnect one GPIO input signal from the DUT circuit andconnect it with a fixed value. Please note, that the signal value is set later during theruntime.

! Note !! !! You can override an input or input−vector of your top−l e ve l entity using the ILA . !! Please note that the input wi l l no longer be connected to the FPGA' s IO pins . !! !! !
Would you l i k e to implement the input control feature ? (y/N) : y
−−− Inputs DUT "ws2812_gol" −−−−+−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+| # | type | range | Name |+−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+| 0 | input | 1 | clk || 1 | input | 1 | reset || 2 | input | 1 | reset_2 || 3 | input | [15:0] | stswi |+−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−+
Select an input signal : 3

Then the type of trigger condition (edge or pattern-matching trigger) has to be entered:

! Note !! !! There are two default triggers that can be set for exactly one signal : !! ' r ising edge ' and ' f a l l i n g edge ' !! There i s also an optional trigger : pattern compare !! With this option , a pattern can be set across the entire b i t width , !! determining for each b i t whether i t should be '1 ' , '0 ' , or 'dc ' !! (don' t care) to a c ti va te the trigger . !! I f this function i s activated , more hardware i s required for the ILA !! and the maximum possible sampling frequency may be reduced . !! !! !
Would you l i k e to implement the function for comparing b i t patterns ? (y/N) : N

Finally, all entries have been made successfully and a list of the signals to be analyzed isdisplayed.
48 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

############ Signals under te s t ############## ## g o l _ i n i t ## gol_next_gen ## [88:81] l i f e _ o u t ## [78:71] l i f e _ o u t ## [68:61] l i f e _ o u t ## [58:51] l i f e _ o u t ## [48:41] l i f e _ o u t ## [38:31] l i f e _ o u t ## [28:21] l i f e _ o u t ## [1 8 : 1 1] l i f e _ o u t ## [1:0] rgb_color ## [7:0] s h i ft_ l i fe _ r o w ## [7:0] ws2812_ram_addr_wr ## [7:0] ws2812_rgb_byte_reg ## [7:0] shift_rgb_byte ## [7:0] ws2812_ram_addr_rd ## data_out ## run ## ##

The synthesis is now started automatically with the ILA configuration.
The FPGA bitstream file is generated and is loaded into the FPGA or the flash memory,depending on the config.py setup.
Execute Synthesis . . .Output permanently saved to : C: \ Users \ df \Desktop\ ILA_03_10_2024_clean \ gatemate_ila \

↪→ log \ yosys . log
Execute Implementation . . .Output permanently saved to : C: \ Users \ df \Desktop\ ILA_03_10_2024_clean \ gatemate_ila \

↪→ log \impl . log
#################### Configuration Fi l e ##################### ## save_config \ ila_config_ws2812_gol_24−10−14_10−32−20.json ## ###
Upload to FPGA Board . . .

UG1005 August 2025 49 of 56

Cologne
Chip Use of ILA CCGM1A1

User settings are displayed now before the DUT is put into operation:
############ CONFIGURATION NOTE ############## ## Trigger at sample no . : 200 ## Defined analysis frequency : 10000000 Hz ## ##
−−−−−−−−−−−−−−− Al l Signals −−−−−−−−−−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+| # | Name |+−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+| 0 | \ ram_to_bit . a s e r i a l . run || 1 | \ ram_to_bit . a s e r i a l . data_out || 2 | \ ram_to_bit . ws2812_ram_addr_rd[0] || 3 | \ ram_to_bit . ws2812_ram_addr_rd [1] || 4 | \ ram_to_bit . ws2812_ram_addr_rd[2] || 5 | \ ram_to_bit . ws2812_ram_addr_rd [3] || 6 | \ ram_to_bit . ws2812_ram_addr_rd[4] || 7 | \ ram_to_bit . ws2812_ram_addr_rd[5] || 8 | \ ram_to_bit . ws2812_ram_addr_rd[6] || 9 | \ ram_to_bit . ws2812_ram_addr_rd [7] || 10 | \ ram_to_bit . shift_rgb_byte [0] || 11 | \ ram_to_bit . shift_rgb_byte [1] || 12 | \ ram_to_bit . shift_rgb_byte [2] || 13 | \ ram_to_bit . shift_rgb_byte [3] || 14 | \ ram_to_bit . shift_rgb_byte [4] || 15 | \ ram_to_bit . shift_rgb_byte [5] || 16 | \ ram_to_bit . shift_rgb_byte [6] || 17 | \ ram_to_bit . shift_rgb_byte [7] || 18 | \ golx64 . ws2812_rgb_byte_reg [0] || 19 | \ golx64 . ws2812_rgb_byte_reg [1] || 20 | \ golx64 . ws2812_rgb_byte_reg [2] |. . .| 104 | \ golx64 . l ife_out_88_81 [4] || 105 | \ golx64 . l ife_out_88_81 [5] || 106 | \ golx64 . l ife_out_88_81 [6] || 107 | \ golx64 . l ife_out_88_81 [7] || 108 | \ golx64 . gol_next_gen || 109 | \ golx64 . g o l _ i n i t |+−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
######## current ILA runtime configuration ######### ## Number of sequences : 1 ## ## Sequences Number: 1 ## trigger activation : f a l l i n g edge ## trigger signal : \ ram_to_bit . a s e r i a l . run ## ##
(For a better overview, the list is abbreviated here.)

50 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

The ILA design is now fully configured. ILAcop.py generates the bitstream file for the ILAdesign and the DUT and uploads it into the GateMate FPGA. Then the DUT is put intooperation and ILAcop.py displays the menu that allows the user to control the analysis.
ILAcop.py will control the process by downloading the data and displaying it in the spec-ified wave viewer once the data capturing has been completed.
Depending on how the trigger settings were selected, further capturing can be carried outwith subsequent download and display of the data.
0 −− exit1 −− change Trigger2 −− s t a r t capture3 −− reset ILA (resets the config of the ILA)4 −− reset DUT (hold the DUT in reset unti l the capture s ta r ts)
Enter your choice : 1

UG1005 August 2025 51 of 56

Cologne
Chip Use of ILA CCGM1A1

8.4 Configuration from a JSON file

Instead of performing the configuration in the interactive shell each time ILAcop.py isstarted, the complete ILA configuration can be read from a JSON file.
To support this, every time ILA is configured with the interactive shell, the configurationis automatically saved in the app/save_config/ directory in a JSON file.
The created filename contains the top-level entity name of the DUT plus the date and timeof creation in the format
ila_config_⟨name⟩_⟨year⟩_⟨month⟩_⟨day⟩_⟨hour⟩_⟨minute⟩_⟨second⟩.json.
This file can of course be renamed and edited if other settings are required than thoseentered in the interactive configuration run.
For each entry in the JSON file, there is a comment that indicates its function.
The following settings can be changed in the JSON file:
• Selection of signals to be analyzed
• Enable or disable the pattern-matching trigger function
• Number of register levels via which the signals to be analyzed are synchronized
• Frequency and phase shift of the additional PLL (if used)

With the following command, ILA can be started again, using the specified JSON file:
$ > python3 ILAcop.py reconfig -l <filename>.json

It is also possible to create a JSON file from a DUT, so that the configurations can be madedirectly in the file, without the need for the interactive shell.
For this, the program must be started with the -create_json option, e.g.
$ > python3 ILAcop.py config -v C:\Users\df\work\AES_encrypt\src -t

↪→ aes_spi_top -create_json

The interactive shell then only asks for a few settings and otherwise writes default valuesto the JSON file.
Afterwards, the configuration values must be set inside the JSON file.
The analysis signals are defined as follows:
52 of 56 UG1005 August 2025

CCGM1A1 Use of ILA
Cologne
Chip

{
"Signal_type": "reg",
"Signal_range": "[127:0]",
"Signal_name": "data_in",
"Signal_moduls": "\\encrypt.",
"selected": [
"A"
]

},
{

"Signal_type": "wire",
"Signal_range": "[127:0]",
"Signal_name": "key",
"Signal_moduls": "\\encrypt.",
"selected": [
"127:100"
]

},
{

"Signal_type": "wire",
"Signal_range": "[127:0]",
"Signal_name": "sub_key",
"Signal_moduls": "\\encrypt.",
"selected": [
"1"
]

},
{

"Signal_type": "wire",
"Signal_range": "[127:0]",
"Signal_name": "data_out",
"Signal_moduls": "\\encrypt.",
"selected": [
"127:100",
"88",
"45:40",
"10",
"1"
]

},

With "selected": [’A’] the entire vector is selected. Individual signals can also bespecified, as well as subsections of the vector, or a combination of individual signals andsubsections within the vector’s range.
Afterwards, the desired entries must then be entered in the created file and ILA can berestarted with
$ > \python3 ILAcop.py reconfig -l <filename>.json

UG1005 August 2025 53 of 56

Cologne
Chip Use of ILA CCGM1A1

8.5 Restart of ILA on the FPGA at runtime

The communication with the ILA design can be restarted at any time after it has beenterminated with the following command:
$ > sudo python3 ILAcop.py start

This command assumes that the gateware is still loaded in the FPGA. ILAcop.py loads thelast setting from the file gatemate_ila/app/last_upload.txt and restarts the DUTand the ILA design in the FPGA.

54 of 56 UG1005 August 2025

CCGM1A1 Acronyms
Cologne
Chip

Acronyms

DUT device under test 5, 7, 9, 10, 13–19, 21, 23–25,29, 33, 34, 36, 38, 39, 47, 50–52, 54
FPGA field-programmable gate array 7, 9, 16, 23, 27, 31, 33, 34, 36,37, 54
GoL Game of Life 37
GPIO general purpose input / output 16, 27, 29, 33, 47
ILA integrated logic analyzer 5–13, 15–21, 23–29, 31, 33,34, 36–38, 46, 47, 49, 51–54
JSON JavaScript Object Notation (data inter-change format) 10, 15, 23–25, 34, 46, 52, 53
JTAG Joint Test Action Group 27, 28, 31, 33
PLL phase-locked loop 16, 24, 38, 52
RAM random-access memory 14, 16, 17, 24, 29, 30, 37, 38,47
SPI Serial Peripheral Interface 5, 8, 27–29, 31, 33
USB Universal Serial Bus 8, 21, 31, 32
VHDL Very High Speed Integrated Circuit Hard-ware Description Language 15, 24, 38

Yosys Yosys Open SYnthesis Suite 7, 9, 12, 21, 24, 26, 34, 38

UG1005 August 2025 55 of 56

GateMateTM FPGA User Guide
Integrated Logic Analyzer
UG1005
August 2025

Cologne
Chip

	User Guide
	Contents
	List of Figures
	1 Introduction
	2 Installation
	2.1 Python3 Installation
	2.2 Installation of ILA
	2.2.1 ILA Download
	2.2.2 Repository Structure

	2.3 Installation of External Python Packages
	2.4 Installation of a Wave Viewer
	2.4.1 GTKWave
	2.4.2 Other Wave Viewers

	2.5 Basic ILA Setup

	3 ILA Functionality
	3.1 Trigger Condition
	3.2 Data Capturing
	3.3 Frequency Setup
	3.4 Recording Length
	3.5 Input Control
	3.6 Reset Control

	4 ILAcop.py Parameters and Options
	5 ILA Setup File config.py
	5.1 Common Remarks
	5.2 Synthesis Tool and Calling Parameters
	5.3 Place&Route Tool and Calling Parameters
	5.4 FPGA Bitstream Upload
	5.5 Waveform Viewer
	5.6 ILA Connection to External Hardware
	5.7 SPI Frequency
	5.8 Block RAM

	6 Hardware Setup
	7 ILA SPI Interface
	8 Use of ILA
	8.1 Workflow
	8.2 The ILAcop.py Menu
	8.3 Configuration Example with the Interactive Shell
	8.4 Configuration from a JSON file
	8.5 Restart of ILA on the FPGA at runtime

	Acronyms

